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What is CCQE? Charged Current Quasi-Elastic
Scattering from nucleons

vV,+ n — u +p

A relatively “simple” interaction
process

Antineutrinos turn protons into neutrons

v'p. /
® /g

proton

recoil neutron

Assumes elastic scattering from a free,
stationary nucleon



WHY CCQE?

Some oscillation experiments reconstruct the
neutrino energy and 4-momentum

transfer QZ from just the muon kinematics
Qb = ZEfE(Eu —p, cosf,) — m?

Some experiments have to assume these kinematics.
(T2K, Not much information from protons)

DUNE will be able to see more detalils.

MINERVA can measure model independent
observables to tune current nuclear models.



SIMULATION: GENIE 2.8.4
(Tweaked)

Quasi-elastic scattering from
nuclei is simulated using:

» Relativistic Fermi Gas model with
Bodek-Ritchie tail

- Axial mass Ma=0.99 GeV
* Fermi momentum kr=221MeV

But there are more nuclear

effects that we need!
(add in Valencia 2p2h model)

We tune GENIE

to match our
data!




What are these effects?

_ Ideal QE Scattel”ing/ O
- /

C‘ f/

proton

Additional
nuclear
interactions due
to correlated
nucleon pairs!

recoiling
neutron

: More th
2Particle2Hole(2p2h): short nu‘ﬁioniﬁﬁ Ill)ee

range correlation ejected!
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2p2h nuclear effects to our GENIE Modification: Neutrinos
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TRACKER

QI{J 85 1&) 1'55 11IO 115

Recoil energy region is shown in blue
Defined as reconstructed energy from clusters not in
the muon track (and are not low activity/crosstalk) .




How does  Find muons

MINERVA see
CCQE? * MINOS matched
» Any number of
neutrons.
* No pions!

* Try not to remove
events with neutrons




Event Selection: Neutrinos
 Muon matched in MINOS as u-
* Track protons and pions
* No Michel electrons
* Only 11isolated energy deposit
» Protonlike tracks (no charged pions)
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Examples of Cuts

. . Integrated over Q2 ,
* This is how events with

plons are remOved 6000~ MINERVA Preliminary

POT-Nornpalized
Data POT: 9.61E+19

* Energy deposited by the
particle long the track in Cut region depends on Q%
the detector Looser cuts as Q?,y increases

This is applied to all
tracks which are not
the muon 01 0.2 0.3 Op¢0to?1.58002é6 0.7 08 0.9 1
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Examples of Cuts
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Event Selection: Anti-Neutrinos V_ll + p — u+n

» No additional tracks at vertex

* Muon track matched in MINOS as u+

* Ejected neutron won’t make track from vertex

* Proton recoil energy > 120 MeV (cannot
reconstruct well below this energy)
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d?c
dxdy
Generated in true bins (i,j), from data in reconstructed bins

(a,p):

Double differential cross section

HOW?

1. Plot the reconstructed event distribution with selection cuts
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d?c
dxdy
Generated in true bins (1,j), from data in reconstructed bins

(a,p):

Double differential cross section

HOW?

1. Plot the reconstructed event distribution with selection cuts
2.Subtract backgrounds
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d?o

dxdy
Generated in true bins (1,j), from data in reconstructed bins

(a,p):

Double differential cross section

HOW?

1. Plot the reconstructed event distribution with selection cuts
2.Subtract backgrounds
3.Unfold data to move events from reconstructed to true bins
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d?c

dxdy
Generated in true bins (1,j), from data in reconstructed bins

(a,p):

Double differential cross section

bkgd
( d*c ) _ Zaﬁ Uaﬁij (Ndata,aﬁ a Ndai?a,aﬁ)
drdy / ;; €ij (®T)(Az;)(Ay;)

15 (0%%

1. Plot the reconstructed event distribution with selection cuts

2.Subtract backgrounds
3.Unfold data to move events from reconstructed to true bins

4.Correct for efficiency and acceptance
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d?c

dxdy
Generated in true bins (1,j), from data in reconstructed bins

(a,p):

Double differential cross section

( d*c ) o Zaﬁ Uagij (Ndata,aﬁ _ Ngif:aﬁ)
drdy/ ;; €ij (®T)(Az;)(Ay;)

15 (0%%

1. Plot the reconstructed event distribution with selection cuts

2.Subtract backgrounds
3.Unfold data to move events from reconstructed to true bins

4.Correct for efficiency and acceptance
5. Divide by neutrino flux and number of targets
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d?c

dxdy
Generated in true bins (1,j), from data in reconstructed bins

(a,p):

Double differential cross section

bkgd
( d*c ) _ Zaﬁ Uaﬁij (Nda-ta,aﬁ _ Ndafa,aﬁ)
drdy ) ;; €ij (®T)(Az;)(Ay;)

15 (0%%

1. Plot the reconstructed event distribution with selection cuts

2.Subtract backgrounds
3.Unfold data to move events from reconstructed to true bins

4.Correct for efficiency and acceptance
5. Divide by neutrino flux and number of targets
6.Present bin-width normalized
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Q%; = 2E)°(E, —p, cos6,) — m?

2
EQE = mj — (m, — Ep)” — m% + 2(m, — E})E,,
v 2(m, —Ep —E, +p,cos0,)

0.2 :
0 With MINERVA'’s energy acceptance,

0.05 we can approximate to the model
independent observables P7 and P
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+ Good phase space coverage




Neutrinos: Double Differential Cross Sections in Muon Kinematics
MINERVA Preliminary Data POT: 3.30e20
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Summary and Outlook

Need 2p2h and RPA models in
our simulation for
constraining uncertainties!

We have a model + ad hoc
corrections to describe the
inclusive data

Genie tuned in Neutrino but
works for both neutrino and
anti-neutrino channels!

Other experiments needs our
enhancements to 2p2h.



THANKS MINERvVA! ESPECIALLY DAN, CHERYL,
AND MINERBA.







Conclusions
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2.4
22

1.8
1.6
14
1.2

-

Ratio to GENIE

0.8
0.6
0.4
0.2

e

data

GENIE RFG M,=0.99 -
NuWro RFG M, =0.99

NuWro RFG M,=1.35
NuWro RFG M,=0.99 + TEM
NuWro SF M,=0.99

15<E, <10 GeV
1 1

10°

T

d’a/ dp, dp (cn’/Gev?/c*/nucleon)

2

107 1

Qe (GeV) (2,

2E2"(E,

Ratio to GENIE

MINER VA Preliminary ® ¥ Tracker — CCQE M

24
2.2
2
1.8
1.6
1.4
1.2

+ data

NuWro RFG M,=1.35
—— GENIE RFG M,=0.99 - NuWro RFG M, =0.99 + TEM
NuWro RFG M, =0.99

NuWro SF M, =099

LR RE LR AR RRR N RRN RARR RN LARNRAN]
T [ARIRAL) LA L]

h‘th
|

038
0.6
04

15<E, <10 GeV

0.2
10°?

i COS )

!”J

We need 2p2h-like models

in our simulation!
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This is CCOm — just like the primary signal region in T2K
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Works on neutrino
AND antineutrino
exclusive channels!

We have a prescription which can be directly applied to oscillation experiments.
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Data Statistical
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Anti-Neutrinos: Systematic Uncertainties (In Muon Kinematics)
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Nuclear Screening

» Polarization of the nucleus screens electroweak coupling of the
W

= A common analogy is screening of electric

+
charge in a dielectric
+ -
= (Calculated using Random Phase
Approximation (RPA)
" __ﬁf. _ -

= Effect on cross section: Suppression at low

/ "1 \ four momentum transfer Q2

Griffiths, Introduction to Electrodynamics
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What are these effects?

_ Ideal QE Scattel”ing/ O
- /
‘, /
proton ‘

2Particle2Hole(2p2h): short
range correlation More than one

nucleon can be
' ejected!
O
.

Long range correlation through
electroweak interactions

oL

Additional
nuclear
interactions due
to correlated
nucleon pairs!

recoiling
neutron

Random phase approximation (RPA)



Anti-Neutrinos: Systematic Uncertainties (In
Muon Kinematics)
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— Background models

+ resonant interactions affect
background subtraction

CCQE / 2p2h model

+ dominated by uncertainty in
correlation effect strength

Final-state interactions

+ pion absorption dominates

_— Flux
+ beam focusing
+ tertiary hadron production
+ reweight to other experiments

= Muon reconstruction
+ muon energy scale dominates
+ tracking efficiency
+ muon angle and vertex position
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Data POT: 3.30e20 MINERVA Preliminary
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— Vv, non-CCQE
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But it does a poor job (17% efficiency) of accepting CCon

events that are not CCQE

We can improve efficiency by relaxing the cut at low Q2, but

will sacrifice purity

Non-Vertex Recoil Energy (GeV)
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Add shelf here, 80 MeV
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v QE-like selected events v QE-like selected events
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